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The Behavior of a Periodically-Forced Nonlinear 
System Subject to Additive Noise 
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We continue the study of a nonlinear first-order dynamical system first considered 
by Chen~ This model is characterized by a multiplicative periodic forcing term 
and additive dichotomous noise in place of the white noise of Chen's analysis. 
Two parameters are used to characterize the qualitative properties of such a 
system, the mean first-passage time to the ends of the interval and the Fourier 
spectrum generated by the solution of the equation. We show that the mean 
first-passage time is monotonic in the amplitude of the periodic force and 
exhibits a resonant dependence on its frequency. In addition the substitution of 
dichotomous for white noise leads to a systematic change in the ability to 
smooth out the peaks in the Fourier spectrum of the solution. 
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1. I N T R O D U C T I O N  

Since the initial suggestion and analysis of the basic ideas behind the 
notion of stochastic resonance, r a considerable amount of analysis has 
been devoted to elucidating properties of dynamical systems subject 
simultaneously to both noise and periodic forcing functions. Such systems 
can exhibit a variety of behavior not accessible when only one type of 
driving force acts on the system. Recently Chen~ has discussed some 
properties of a Brownian rotor whose equation of motion is 

0 = v sin(~ot) sin(0) + (20) 1/2 n(t) (1) 

where 0 is an angle and n(t) is white noise characterized by the second- 
order properties 

(n(t))  =0, (n( t )n(s ) )=6( t -s )  (2) 
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Since 0 is an angular variable, the constants v and D have dimensions 
(time) -~. Chen investigated a property of the system behavior which he 
termed noise-induced instability. This is defined by the statement that the 
noise in Eq. (1) eventually drives the system through the two fixed end- 
points of the interval which would not be the case in the absence of noise. 
Facets of erratic behavior are exhibited by both the system trajectory and 
the associated power spectrum. 

The noise-free version of Eq. (1) 
periodic term occurs multiplicatively 
usual analyses of nonlinear resonance. 
is readily shown to be 

0(t) = 2 tan-1 {tan ( ~ )  

can be solved exactly because the 
rather than additively as in more 
The solution to Eq. (1) with D = 0 

in which 0o = 0(0). It is evident from this expression that in a noise-free 
system O(t) cannot reach the boundaries of the fundamental interval at ___ n 
unless it is at one of them initially. However, in the presence of noise the 
system will exhibit diffusive behavior and, for any initial condition, will 
eventually reach one or the other of the endpoints. The competition 
between noise and the periodic coefficient has an interesting aspect, as 
remarked on by Chen,/3/ namely that increasing the amplitude of the 
deterministic term also increases the importance of the noise term in 
Eq. (1). This seemingly paradoxical statement is easily explained by the fact 
that an increase in the periodic term causes O(t) to approach the interval 
endpoints. When O(t) is in the neighborhood of one of these points the 
effect of the random force is to cause O(t) to reach one or the other value 
___ rc in a finite time. 

In the present paper we generalize the work of Chen by considering 
three further aspects of the behavior of the dynamical system in Eq. (1) to 
elucidate the interplay between noise and the periodicity that one finds in 
the solution of the noise-free equation. The first of these is contained in a 
study of the first-passage time problem associated with the system to reach 
one of the two points _ ~. Here we generalize a recent study of the same 
problem for the simpler linear case, (4) which is defined by 

O = v sin(~ot) + (2D) m n(t) (4) 

The results of that investigation established resonant behavior of the mean 
first-passage time considered as a function of the frequency. We show that 
this, too, occurs in the nonlinear system in Eq. (1). We then consider 
some effects on the dynamical system of changing n(t) to either a deter- 
ministic square wave signal or dichotomous noise, to determine which 
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properties of the system are truly dictated by noise and which can be 
reproduced by a deterministic forcing function allowed to take on both 
positive and negative values. 

2. THE F I R S T - P A S S A G E - T I M E  PROBLEM 

As mentioned, O(t) will always reach one of the endpoints of the 
fundamental interval when noise is present. One is then interested in 
properties of the first-passage time, and in particular, how this first-passage 
time is influenced by the competing influences of the periodic and noise 
terms. 

We will express the Smoluchowski equation equivalent to Eq. (1) in 
terms of the dimensionless variables y = 0/z, z = Dt/~ 2, and p = ~zzo)/O: 

Op 02p ~sin(p~) ~ 0r 0y 2 ~yy [sin(~y)p] (5) 

where e = 7w/D. The transformation from 0 to y takes the interval + ~ into 
_+ 1. By convention we assume that e > 0. We seek the solution to this 
equation that satisfies the initial and boundary conditions 

p(y, 0) = 6 ( y - y o ) ;  p ( - 1 ,  z )=  p(1, r ) = 0  (6) 

We proceed by expanding p(y, z) in a Fourier sine series that ensures that 
the boundary conditions are satisfied. That is to say, we write 

p(y, z)= ~ a,(z) sin(nny) (7) 
n = l  

When this series is substituted into Eq. (5) then, by taking advantage of the 
orthogonality of the sine functions, one reduces the problem of solving 
Eq. (5) to that of solving an infinite set of differential equations: 

fin d- rtzTzZan = - - ~ 1  sin(pz) n[a,+ 1 - a,_ 1] (8) 

in which el = n~/2. A knowledge of the a,(z) and the Laplace transforms of 
these functions {6,(s)} allow us to express the survival probability S(z[yo) 
and the associated mean first passage (z lYo)  as 

2 oo 2 ~ ~2n+1(0) 
S(zIYo)=-~ Z azn+l(z) (zIYo)  = -  /.2 2 n + l  (9) =l 2 n + l  ' ~ , = l  

Finding a solution to the full set of differential equations in Eq. (8) is 
not a trivial task because of the occurrence of the time-dependent term on 
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the right-hand side. It is possible, however, to calculate successive 
approximations to the solution in the form of a perturbation series 
provided that el ~ 1. We then expand an(r) in the series 

an(r) = a,(J) ('17) ~ 1 J (10) 
j = o  

The solution is then generated from the hierarchy of equations 

�9 (0) 2 2 (0) a n + ~ n  a n = 0  ( l l a )  

( l ( J + l ) - } - 7 ~ 2 n 2 a ( J + l )  = -(rc/2) sin(pr)n[a~J)+l - ~n-,J"(J) q ( l lb )  

In order to find the mean first-passage time. it is expedient to generate the 
corresponding recursion relation for the Laplace transforms. Because of the 
appearance of the sinusoidal term in Eq. (8) this is 

~O~(s ) = 2 sin(n~y0) (12a) 
S + ~ 2 n 2  

in [an+ ~(s- i p ) - ,  (;)~.+ ,,~t~ + ip) ] aY+l)(s)=2(s+g2n2 ) { (;~ 

--  [a~ j)_ l (s  - ip)  - a~ j)_ l (s  + i p ) ]  } (12b)  

The inversion of Eq. (12a) is, of course, trivial. From that inversion and the 
recursion relation in Eq. (12b) we can generate approximations to (r[yo),  
which, to terms of order in Sl is 

1 1 
( z l Y o ) ~ S y o ( - - Y o )  

+_~pn2 ~ 1 ~sin[2(n + 1) ~yo] sin 2n~yo (13) 
= 2n+  1 t 7 + 1 - 6 - ~ 4 ~ + ] - ~  p2+ 16~4n4 

It is clear that the term proportional to el has an extremum when con- 
sidered as a function of p. To see this, we can, to a good approximation, 
replace the indicated sum by the n = 0 term along, which allows us to 
replace Eq. (13) by the simplified expression 

1 s~ . p 
(z[ Yo) ~ ~ yo(1 --Yo) +~-5 sm(2nyo) p2 -k- 16re 4 (14) 

from which the resonant behavior is evident, although it is small because 
of our assumption that/~1 ~ 1. Notice that because of the sine term on the 
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right-hand side the extremum can be either a minimum or a maximum, 
depending on the initial position Y0. The approximation in this last equa- 
tion implies that when Y0 < 1/2 the perturbation term leads to an increase 
of (zl  Y0) with respect to the zeroth-order term, while when y o >  1/2 the 
mean first-passage time is decreased. This can be understood physically, 
since when Yo is small the field tends first to move the particle in the 
direction of the trap at y = 1. After a cycle of motion biased in this way 
untrapped particles tend to reverse direction, thereby prolonging their 
average sojourn time and preserving their status as untrapped particles. On 
the other hand, particles closer to the trap at y = 1 move toward the trap 
there, with the result that a greater number of them are trapped at early 
times. An important further observation is that in the present example the 
competition between noise and the effect of an oscillatory field depends not 
only on the amplitudes but also on the forcing frequency. 

3. A P E R I O D I C  D E T E R M I N I S T I C  FIELD 

Chen considered a problem which essentially compared the effects of 
the inherent nonlinearity to those due to noise. The balance of these is the 
source of this so-called erratic behavior./3) We here discuss the behavior of 
a system in which the noise term is replaced by a deterministic telegraphic 
signal so that the equation governing the dynamics is 

p = e sin(z) sin(y) + Ah(z) (15) 

in which A is a constant and the function h(z) is defined by 

h(z)= { + 1  for z e I-2mf2, (2rn + 1)f2] 
- 1  for z~[(2m+l)f2,(2m+2)f2] (16) 

in which m = 0, 1, 2,.... Our investigation is aimed at discovering whether 
the system defined by Eqs. (15) and (16) exhibits any symptoms in the 
solution similar to Chen's erratic behavior. Of course one cannot expect 
true erratic behavior in Chen's sense of the term since there is no random 
element in our defining equation. All of the conclusions discussed below are 
based on results of numerical solutions to Eq. (15). 

We have chosen the time variable in the definition of Eq. (15) so 
that the frequency in the deterministic term is effectively equal to 1. Our 
definition of the function h(z) defines a second frequency f2. We might 
expect y(z) to be a periodic (although possibly quite complicated) function 
of z when f2 is a rational number and a quasiperiodic function when it is 
irrational. 

A qualitative picture of some properties of the solution appear in 
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terms of its power spectrum defined in terms of the Fourier transform of 
y(t) as g(r/)= I~-{y(t)}l 2, where r/ is the transform parameter. When e is 
small one expects the periodicity in h(r) to be the significant factor that 
determines the resonant peaks in gO/), while for larger e both frequencies, 
that coming from the sinusoidal term in Eq. (1) and that arising from the 
periodicity in h(z). In the following section we will consider the effects of 
dichotomous noise, in which case we want to establish a correspondence 
between the amplitude A and the diffusion constant D, which is equal to 
0.001 in Chen's article. In this deterministic case this will be done by taking 
the average of A 2 over a complete cycle of duration 2~t/(2 and equating it 
to 2D. This yields the value A = 0.04472. 

When e is sufficiently small, peaks in the power spectrum will principally 
be determined by the telegraph signal given in Eq. (17). We found that with 
I2 = 0.5 for e in the range 0-1.5, peaks of the spectrum considered as a 
function of q occurred at multiples of 0.5. As e increases, the influence of 
the nonlinear term in Eq. (15) becomes more significant. Then it is found 
that the peaks at q = 1, 2,... disappear, leaving only those at r/values at the 
values n + 1/2, where n = 0, 1, 2 ..... Our numerical calculation indicates that 
for the values (2 = 1/4 and e=0.1  an increase in A from 0.5 to 10 converts 
the minima of g(q) at the values ~/= 1, 2, and 3 into maxima at those 
values. The same inversion occurs if one fixes A = 0.5 and increases e from 
0.1 to 3. We mention in passing that for the irrational value (2 = v/2 we 
found the transform g(~/) to be practically fiat for all values of e, which 
suggests that a more precise definition of the terminology "erratic 
behavior" would be of some value in distinguishing that from chaotic or a 
purely periodic signal. 

4. D I C H O T O M O U S  N O I S E  

The work of Chen was directed at the study of the effects of white 
noise on properties of the solution to Eq. (1). Here we consider a particular 
case of colored noise, and more specifically, dichotomous noise. That is, 
n(t) = +_A, the durations of time spent in a single sojourn in either the 
positive or negative states, are taken as random variables, the transitions 
occurring at rate I2. We examine the behavior of the normalized function 
g(tl)/g(O ) as a function of r/ at different values of the amplitude e when f2 
is held fixed. In Fig. 1 we plot g(tl)/g(O) against t /for the values A = 0.04472 
and f2 = 2 for the three values e = 1, 2, and 3. When e = 1 there is a domi- 
nant peak at t /=  1 and much smaller ones (unobservable on the scale of the 
curve in Fig. la)  at t /= 2 and 3. As the amplitude e increases, these peaks 
become less prominent and more or less disappear at e = 3. This is similar 
to the case of white noise case analyzed by Chen, the results being s u m -  
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Fig. 1. (a)  A plot of  g(tl)/g(O) x 10 2 as a funct ion of  r/ for s = 2 and  s = 1. The  sharp peak  
at  t / =  1 is evident.  M u c h  smal ler  peaks  occur  at r / =  2 and 3. These  are too  smal l  to be seen 
on  the scale of  the graph.  (b) The  s a m e  plot  for e = 2 on  the same  scale. The  peak at r / =  1 
is still in evidence,  but the one  at r /=  2 has  b e c o m e  m u c h  m o r e  prominent ,  whi le  that  at t / =  3 
is still too  smal l  to be seen. (c)  The  same  plot  for e = 3. N o n e  of  the peaks  s h o w  up in this 
figure. 
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marized in Fig. 2 of this paper. When the frequency is decreased to 1/2 the 
peaks in the spectrum disappear at lower values of e. Our numerical results 
suggest that at the smaller values of g2 dichotomous noise smooths out 
peaks in the spectrum more effectively than white noise, while at the larger 
values of ~ the opposite conclusion holds. 

5. D I S C U S S I O N  

Our results extend the analysis of Chen of a particular nonlinear equa- 
tion which is interesting because it reflects the combined effects of noise 
and periodicity. In our analysis we looked both at the first-passage-time 
problem associated with the particle leaving the fundamental interval 
(-re, +re) and at the spectrum generated by the solution of Eq. (1). 

In our study of the first-passage-time problem we have found that 
significant changes in the mean first-passage time can be induced by 
changing either the amplitude or frequency of the periodic term, and indeed 
there is a "resonant" frequency at which the mean first-passage time is a 
minimum. This is in agreement with the results of Fletcher et al. for the 
ordinary diffusion process. ~3) 

A numerical solution of the equation analogous to Eq. (1) except for 
having the noise term replaced by a symmetric pulse shows that the Fourier 
spectrum has distinct peaks when the two frequencies appearing in the time- 
dependent terms are commensurate. When, however, the frequencies are 
incommensurate, the Fourier spectrum is flattened to a considerable degree, 
which is similar to the "erractic" spectrum found in Chen's analysis. This 
raises the question of whether, and under what circumstances, the concept 
of erratic behavior can be expected to be a useful one. In particular one 
might question its use for systems not having enough degrees of freedom to 
manifest deterministic chaos. 

Our analysis of Eq. (1) with dichotomous rather than white noise 
showed that the solutions are similar in that they both can be described as 
being diffusive. At small switching frequencies of the dichotomous noise the 
peaks in the Fourier spectrum of x( t )  are smoothed out more for small 
values of the amplitude than is the case for white noise of the same strength, 
while at higher frequencies the relation is reversed. 
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